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We study critical adsorption in models of ideal polymer chains situated on fractal spaces in the vicini-
ty of an impenetrable surface. The obtained exact results on fractal lattices, with a coordination number
that can vary from site to site of the lattice, reveal a critical behavior that might be quite different from
that established for lattices with the same coordination. Specifically, in the cases where localization of
the chain takes place, i.e., when the mean end-to-end distance of the chain grows more slowly than any
power of its length N, we found that various generating functions of interest usually display multiplica-
tive singular corrections to the leading power law singularities (confluent logarithmic singularities, for
example). We have demonstrated with specific examples that the average fraction of steps of the chain
on adsorbing surface, at critical adsorption point, vanishes according to the asymptotic law

¥ . . 12 . ‘s
~In 'N (where 1, <0 is a given constant) or ~exp(—c In 2N) (where ¢ and 1, are certain positive con-

stants).

PACS number(s): 64.60.Ak, 05.40.+j, 68.35.Rh

I. INTRODUCTION

Statistical properties of a single polymer chain near an
attractive surface have been studied for a long time (see,
for example [1]). The general picture that emerges from
these studies reveals that a polymer chain can undergo an
adsorption-desorption transition. At low temperatures,
the chain is basically localized in the vicinity of the ad-
sorption surface, with a finite fraction M /N of its mono-
mers lying on the surface, while at higher temperatures a
nonadsorbed behavior prevails. Later, this transition was
fruitfully described in the framework of surface critical
phenomena [2]. Most of the reported theoretical works
are based on the study of suitable models of polymer ad-
sorption on standard homogeneous spaces. Recently,
considerable research activity has appeared in the study
of the critical adsorption in various models of polymers
which reside on fractal spaces [3—8]. In all these models
excluded-volume effects have been taken into account,
and a simple scaling picture of critical adsorption, of the
type found earlier in the case of Euclidean spaces [9], has
been established. A similar conclusion was reached in
the case of polymer chains represented by simple random
walk paths (without constraint of self-avoidance) on frac-
tal lattices with a uniform coordination number [10].

In the more general case of random walks on fractals
with coordination numbers that can vary from site to site
of the lattice, one can consider several types of statistics
[11]. The statistical weight associated with a particular
path of such a kinetic random walk depends on both the
number and type of visited sites [12]. On the other hand,
one can associate the same weight KV with each path
having N steps irrespective of the coordination number of
visited sites. This model, known also as the ideal chain
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model [13], is closely related to the equilibrium statistical
problem of an ideal polymer in solution. Recently ob-
tained results [13,14] show that the ideal chain model and
kinetic random walks in an inhomogeneous environment
do not belong to the same universality class. It is obvi-
ous, on the other hand, that both statistics become
equivalent on a Euclidean basis, and on those fractal lat-
tices that have the same coordination number.

In a previous work [10] we studied the problem of criti-
cal adsorption of random walks on a class of exact frac-
tals with uniform coordination. Using an appropriate
Gaussian model and a renormalization group approach,
we have been able to express a set of pertinent critical ex-
ponents in terms of spectral and fractal dimensions of the
fractal substratum and the adsorbing boundary fractal di-
mension. In this paper we develop an approach suitable
to treat a similar Gaussian model on fractals with nonun-
iform coordination numbers in the presence of a fractal
boundary. The exact results obtained show that critical
adsorption of ideal polymer chains in this case can be
rather different from that described in Ref. [10]. In par-
ticular, there is not the simple connection established in
[10] between the crossover exponent ¢ (M ~N¢) and the
surface susceptibility exponents. What is more, in the
cases when mean the end-to-end distance of the chain
grows more slowly than any power of its length N, vari-
ous bulk and surface generating functions do not display
simple power law singular behavior, which means that
standard critical exponents are not defined. As we shall
show, in such cases the leading singular behavior of the
generating functions of interest can be expressed as a
product of several confluent singular terms.

This paper is organized as follows. In Sec. II we
present our model and its solution on some simple exam-
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ples. In Sec. I A we consider the adsorption problem on
a simple treelike lattice—the T fractal. Then in Sec. II B
we study the properties of an ideal chain on a modified
Koch curve with loops on all scales. There we shall ana-
lyze the critical behavior of the chain for two different
choices of adsorbing wall. In Sec. III we turn to cases
where one may expect localization [13] of an ideal chain:
We study adsorption on fractals where the sites of the
highest coordination number of the lattice do not form an
infinite connected network—two- and three-dimensional
modified gaskets with a space scaling factor equal to 3.

II. MODEL AND ITS SOLUTION
ON SIMPLE EXAMPLES

It is well known (see, for instance, [15]) that statistics
for random walks on lattices can be captured by using a
suitable Gaussian model. Indeed, the two-spin correla-
tion function of a Gaussian model represents the generat-
ing function of numbers of random walk paths between
two given points. In a similar way, the generating func-
tion for numbers of all walks on the lattice can be related
to the susceptibility, whereas the probability of return to
the origin of a walk can be obtained from the free energy
of the model [15]. For these reasons, critical adsorption
of an ideal polymer chain near an impenetrable wall can
be described by using an appropriate Gaussian model.

A. Ideal chain on a T-fractal lattice

Consider first, for simplicity, only the bulk partition
function of the usual zero-field Gaussian model on a T-
fractal lattice at the rth stage of its iterative construction
[see Fig. 1(a)]

ZOKy=[7 -+ [ds, - dSyexp

_1 2
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ij)

FIG. 1. (a) First two stages in the iterative construction of
the T-fractal lattice. The final object has a fractal dimension
D=In3/In2. (b) Schematic representation of an rth stage T
fractal with the adsorbing boundary (shadow region). To obtain
the partition function Z”(S,S,), one has to perform integra-
tion over two internal spins S; and S, [see relation (6)].
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where §; is the continuous spin variable at site i, K stands
for the interaction between each nearest-neighbor pair of
spins, and (ij) denotes the summation over all such
pairs. Let us imagine that we have performed the in-
tegration over all internal spins of an rth order lattice. It
is clear, from symmetry considerations, that resulting
function should take the form

Z'"(S,,8,)=D"exp[ A"(S?+S52)+B""S,S,], )

where S| and S, denote two outer spins from Fig. 1(b)
(separated by the distance R =2'), while parameters 4 ",
B”, and D" depend on the interaction parameter K. It
is clear that partition function (1) can be expressed in
terms of these parameters,

zW= [ [ds,ds,Z""(S,,S,)exp[ —L(S2+52)]
2 D(r)
= = 2 2 3)
\/1_4A(r)_+_4A(r) _B(r)
Thus, knowledge of 4", B and D" enables us to
learn all thermodynamic properties of the model. Fur-
thermore, it is a simple matter to see that the correlation

function can be expressed in terms of these parameters as
well,

(8,8,)=G""(K)

1 r
70 ffdsldszslszz( ’(S4,S,)

Xexp[ —H(ST+S2)] . 4)

After a simple integration, we obtain

(r)
G= B . 5)
(1_2A(r))2__B(r)

The parameters 4" and B'” entering the above rela-
tions can be determined recursively. Indeed, the rth or-
der partition function (2) can be obtained from similar
(r —1)th order partition functions,

z"(8,,8,)= [ [dS,ds,z"~(s,,S;)

XZ'"71(8,,8)Z7 (85 S,)
(S3+5S32)
2

Xexp (6)

Taking (2) into account, it is not difficult to obtain the
following recursion relations:
4r=2A4—164°+244°+B*—44B?
2(1—8A4+124%—B?)

’

(7)
L (1—2A4)B?
B'= 2 20
1—84+12A°—B
and
3
, 27D (8)

V1-84+1242-B2

where, for clarity, we have suppressed the superscript
(r—1) on the right-hand sides of the above equations,
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and have substituted the superscript (r) with the prime
on the left-hand sides. This system of recursion relations
has to be supplemented with the initial conditions

A®=0, BO=K , and DV=1. 9)

It turns out that critical behavior of an ideal polymer
chain on a T fractal can be related to a certain peculiar
singular behavior of the recursion relations (7), which
occurs for large r, when we start with initial conditions
(9) and a value of the interaction strength X lying in the
vicinity of its critical value K, . It seems that singular
structure of the above recursions has a nature similar to
the one found recently in a study of the same problem,
but using a somewhat different approach [13]. It is also
worth mentioning here that similar singular forms have
been noticed earlier, in a study of branched polymers on
fractals [16], and more recently [17] in the problem of
diffusion on ramified fractal structures in the presence of
a biasing field. Looking forward, we may say that critical
adsorption of an ideal polymer chain on fractals depends
sensitively on the character of the singular behavior of
relevant recursion relations. Therefore, it is very useful
to examine our approach first on the simple bulk case,
which provide a good pedagogical example. We are now
going to derive the leading asymptotic behavior of the
ideal polymer chain which follows from the above recur-
sion relations.

As mentioned above, the correlation function (5)
represents the generating function for the numbers
G"(N) of all N-step random-walk paths that join two op-
posite horizontal vertices of an rth order T fractal,

G(K)=F $(NKN, (10)
N

where K should be interpreted as the fugacity per step of
the walk. The average number N'” of steps of all walks
between two vertices depends on K, and can be expressed
in terms of the first derivative of G(K): N
=K (d InG'")/dK. For large r (r— ), there exists a
critical value of the fugacity K, which corresponds to the
limit of very long polymer chains (N'”-— o0 ). In this re-
gime one usually tries to express the leading asymptotic
behavior of the mean end-to-end distance R of the walks
in the form of a simple function of N (as a rule, it is a
power law: R ~N", v being the critical exponent). The
asymptotic behavior of N is closely related to the com-
portment of 4", and B” and their derivatives 34" /0K
and 3B " /3K in the vicinity of K =K.

If the value of the fugacity K in (9) is less than
K_.=0.394 293. .., then, under successive iterations of
system (7), B'” decreases to zero, while 4" tends to a
certain K dependent constant. If K is larger than the
threshold value K, then both 4 " and B displays some
spurious instabilities reflecting the appearance of an un-
physical region (Gaussian model is not defined in the low
temperature region K > K_, see, e.g., [15]). Finally, pre-
cisely at K =K, all successive iterations of 4'” and B'”
lie on an invariant line starting at the point 4 ‘®=0,
B'9=K, and ending at the point A =1, B=0 (see Fig.
2). It is easy to see that recursion relations (7) become
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FIG. 2. Phase diagram on the A-B plane for an ideal poly-
mer chain on the T-fractal lattice bulk. Under recursion rela-
tions (7), all sets of initial conditions (9) with K < K,.=0.39429
flow toward the A4 axis (4 < 1), which corresponds to finite po-
lymer chains. This region is limited by an invariant line signify-
ing the appearance of an infinite chain. The invariant line joins
the points (4'”=0, B®=K_)and (4'*'=1, B{=)=0).

singular at the latter point. It turns out, however, that
just this point controls the critical behavior of the ideal
polymer chain. A numerical analysis reveals that this
point represents a sink for all points lying on the invari-
ant line. To overcome this difficulty, and to find a proper
form of recursion relation in the neighborhood of the
sink, it is useful to know at least an asymptotic equation
of the invariant line. Fortunately, its asymptotic form is
quite simple, and can be obtained analytically, by making
a perturbative expansion in powers of B. This leads to the

asymptotic equation of the required invariant line
A(B)=l-—1+‘/13 _29—v'13
6 12 184

B*+0(B’), (11
which is valid for small values of B. Taking into account
(7), we find that along this line the recursion relation for
B acquires the simple form

_V13—1
6
implying B ~[(V13—1)/6]".
Taking partial derivatives of Eqgs. (7) with respect to K,

we can obtain recursion relations for 34 /3K and
3B /3K. These relations can be written in matrix form,

B’ B+0O(B?), (12)

aA(r) aA(r) aA(r) aA(r—l)

3K 34— apir—1h 3K

3" |= | ap® 3B ™ 3B(r—1 (13)
oK dAlr—1  gptr—1n 3K

It is clear that the asymptotic behavior of these deriva-
tives substantially depends on the comportment of the
matrix appearing in (13). One can show that for K =K_,
elements of this matrix do not depend on r (for large r),
and that its largest eigenvalue is equal to 2, implying
34" /30K ~3B'" /3K ~2". Using these results, we can
extract the leading asymptotic behavior of N: N
~(1/B")dB" /3K ~ A}, with A;=1+V'13. This allows
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us to express the average end-to-end distance R ~2" as a
function of N”: R ~exp(r In2)~exp[In2 In(N")/InA,],

ie.,
R~N" with v=-82
InA,

=0.453 849 , (14)

which coincides with the corresponding result of Ref.
[13]. Knowledge of the asymptotic properties of 4",
B, 34"/3K, and dB'"” /3K along the invariant line
suffices to establish the leading singular forms of the free
energy density and its first derivative with respect to K.
Indeed, by iterating the recursion relation (8) we can ex-
press the partition function (3) in terms of 4 and B. The
expression obtained provides a good starting point to
deduce the way in which diverges internal energy, i.e.,
generating function P(K) for the numbers of random-
walk paths that return to the starting point of the walk.
Thus, for K — K, from below, we found the power law

(15)
J

P~(K,—K)n3/n(1+V13)~1]

b

Cc'=

C(1—84+124%4+3B—6A4B)+H(B—2AB+B?)

1—84+1242—RB?
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which means that for large N the number of all N-step
closed paths scales as Kc_le_z, with the critical ex-
ponent ¢ =2—1n(3)/In(1+Vv"13)=1.28067.

The above described approach can be extended to the
case of the presence of a finite magnetic field. The free
energy of such a model naturally splits into two terms,
one of them being the above mentioned zero-field free en-
ergy, while the other one involves the magnetic field. It is
convenient, therefore, to express the partition function
Z'"(S,,S,) in the form

Z'"(S,,8,)=D"exp[ A"(S?+S52)+B""S,S,
+Cc'"(s,+8,)+E"], (16)
where parameters C'” and E'” spring from the interac-
tions of the Gaussian spins with the (reduced) magnetic
field H. If we put this form into (6), and multiply the in-
tegrand of such obtained relation by exp[ H(S;+S,)], we

can then use it to determine the recursion relaticns for
parameters C and E. In this way, we obtain

(17)

CY5—124+3B)+4CH(1—3A+B)+H*1—4A4+B)

E'=3E+
1—84+124%—B?

whereas initial conditions for these variables have the
form CV'=0 and E‘!’=0. It is useful to note here that
magnetic field H enters recursion relations (17) and (18)
in both explicit and implicit ways.

The above relations can be used to determine the field
dependent part of the free energy of the model. In partic-
ular, the susceptibility of the Gaussian model, i.e., the

> (18)

f

generating function for the numbers Q(N) of all N-step
paths per lattice site, can be constructed by using the
above recursions. Here we give only a few details con-
cerning the leading singular behavior of the zero-field
susceptibility y. Iterating the recursion relation (18), and
retaining only the most divergent term of such obtained
expression, we obtain the estimate

Mr)x(r)~(aZE(r)/aH2)|H=0~(aZE(r)/ac(r~1)2)(ac(r—l)/aH)2~(I/B(r))(ac(r)/aH)z ,

where V" ~ 3" denotes the number of sites of an rth stage
T fractal. Taking the first derivative of (17) with respect
to H, it is easy to construct an exact recursion relation
for derivatives 3C'” /dH. Using such a relation we find
that 3C'" /3H, at H=0 and K=K, follows the asymp-
totic law 8C'”/d0H ~[(1+V'13)/2]". Putting these re-
sults together, we have x”~[(5+2Vv'13)/3]", which
yields

X(K)~(K,—K)77

54+2v'13
In |22

with y= =0.919117, (19)

In(1+v13)

in agreement with [13].

—

The extension of the above described approach to the
case of the presence of a surface is straightforward. We
suppose that the reduced interaction strength takes the
value K for all nearest-neighbor pairs of spins, except for
pairs lying on the lattice boundary [the shadow region of
Fig. 1(b)], for which it is K;. It is also convenient to in-
troduce a reduced surface magnetic field H; which cou-
ples only to the spins on the boundary, while the usual
bulk magnetic field H couples to all other spins.

To proceed, we relate the rth order partition function

Z{"(8,,8,)=D{"exp[ 47(S]+83)+B{’S,S,
+C{(S,+S,)+E{"], (20)

to the corresponding (r —1)th order partition functions
[see Fig. 1(b)],
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Z(5,,5,
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)= [ [dS;dS,Z,(S,,5,)Z(83,5,)Z (53,5, )exp[ — 1S3 +5})+H,S, +HS,] ,

where the (r —1)th order bulk partition function Z(S,,S,) has been defined in (16) (to simplify notation we have

suppressed the iteration index r).

Having determined Z "

(S4,S,), all thermodynamic properties of the above men-

tioned Gaussian model can be derived from the partition function

Z\(K,K,,H,H,)

= [ [ds,dS,Z (5,5, )exp[ —1(S}+S3)+H,(S,+5,)] .

The first of these two relations enables us to derive relevant recursion relations. We find that parameters 4, and B,

must satisfy the recursion relations

A(1—44+44°—44,+844,

—B?)+B*(1—24)

A ’1 = 2 2 ’
21—4A4+4A42—44,+844,—B?)
21
B = (1—24)B}
' 1—44+442—44,+844,—B%’
[
and initial conditions 4”’=0 and B'V=K,. In the con- derive asymptotic behavior of the derivatives
text of the adsorption of a polymer chain, it is convenient (8 4{” /dK)~(3B\” /3K)~2", which implies N

to express the interaction strength K, as the product of
two weighting factors K; =Kw —the first of them being
the usual one-step fugacity, while the second represents
an additional weight for each step (monomer) lying on
the adsorbing boundary [if, for example, one assigns an
energy €= — || for each step along the attractive surface,
w may be interpreted as a suitable Boltzmann factor
w=exp(—e€/T)>1, which leads to an increased proba-
bility of making a step along this surface]. The correla-
tion function for two spins lying on the boundary takes
the following form:
(r)
G\ = B, =, (22)
(1— A (r) )2 r)

and it provides the generating function for the numbers
@Y N,M) of all N-step walks on an rth order lattice, M
of which lie on the surface, provided both ends of the
walk are attached to the surface [G{”(K,w)
=3 v9(N,M)KYwM]. This function can be used,
therefore, to obtain both the average number of mono-
mers NV =K (d InG{”)/dK) and the average number of
adsorbed monomers M =w(d InG{"”) /dw.

Here we focus our attention on the phenomenon of
critical adsorption of an ideal polymer chain, which is de-
scribed by recursion relations (7) and (21) and correlation
function (22). Both numerical and analytical analyses of
these relations reveal that, for a given value of w, there
exists a value of the fugacity K, (w) corresponding to a
certain critical behavior of the chain. Specifically, we
find that for all values w > 1 there exists an invariant sur-
face which controls the adsorbed state of the chain. An
asymptotic equation of the invariant surface can be
represented by the plane

A =1—14—1B . (23)

Along this plane, parameter B, follows the simple recur-
sion relation B} =1B,, while parameter B very rapidly
goes to zero under iterations (it renormalizes
according to the law B'~B?2). Using (23) it is easy to

~(1/B{"}3B\"” /dK) ~4". It is obvious, therefore, that
the average end-to-end distance of the chain in this re-
gime follows the usual power law R ~2"~N!/2 with a
value of the critical exponent v, v=1, which reflects its
one-dimensional critical behavior [18]. A similar con-
clusion may be reached by studying the fraction M /N of
monomers adsorbed at the boundary. Results of our nu-
merical analysis of the generating function (22) and its
corresponding derivatives support the expectations that
this quantity should be finite in the region w > 1.

In contrast to the above case, we find that critical fuga-
city keeps the same value, K (w)=K_ (1), in the region
w <1, implying a vanishing fraction of random-walk
steps in contact with the boundary (M /N

=(w/K/)[dK.(w)/dw]). This corresponds to a
desorbed state of the chain [19]. For w <1, parameter
B'” goes very rapidly to zero under iterations (much fas-
ter than B'"), while A‘l” reaches certain finite value
which depends on w[A4{*(w)<1]. Precisely at w=1
another type of critical behavior sets in, corresponding to
the critical point of the adsorption transition of an ideal
polymer chain. We have found that bulk and concomi-
tant surface variables at this point follow the same
asymptotlc law. For example, we have found

B ~B{" ~[(V13—1)/6]", while both A" and A’
tend to + at K=K (1). One can show that derivatives of
these  parameters with respect to K  fol-
low the previously established law 94/3K

~3A4'\” /3K ~3B'"' /3K ~3B\" /0K ~2", which means
that asymptotic behavior of the average number of all
monomers remains unchanged and that, therefore, the
bulk critical exponent (14) still governs the average end-
to-end distance.

It is of interest to study behavior of the fraction of ad-
sorbed monomers at the point of adsorption transition.
To deduce the asymptotic law of the average number of
adsorbed monomers, M ~(1/G{"” (3B’ /dw), one can
consider recursion relations for derivatives 34 {” /0w and
dB{ /dw, which may be written in a matrix
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form similar to (13). The largest eigenvalue of
pertinent matrix governs the asymptotic behavior of
these derivatives, 34{” /dw~dB{” /dw ~[(13+2V13
+1/329—56V'13)/18]’, which leads to the law M "~}
with A,=(13+5V13+V'350—14v'13)/12. Taking into
account that N”~A! we conclude that at criticality
K =K_(1) the usual power law M ~N? holds (see, e.g.,
[9]), where the crossover exponent ¢ is given by

__InA,
B InA,

¢ =0.912246 . 24)

Now we turn to a study of asymptotic behavior of
zero-field surface susceptibilities y;=03%f, /dHAH, and
X11=0%f,/0H?, where f,=f,(K,K,,H,H,) represents
the surface free energy density of the model. The func-
tion Y, (function Y,;) provides the generating function for
the numbers Q(N) [Q;(N)] of all N-step walks with one
(both) end(s) attached to the adsorbing boundary. It is
generally believed that these numbers follow the asymp-
totic laws

QUN)~K NN
- (25)
Q(N)~K NN
where K. =K _(w) and y, and ¥, are the associated criti-
c c 11
J

, (1—24)[C,(1-24 —44,+2B,)+B,(C+H,)]+B(B,C+BC,+B,H)
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cal exponents which can assume distinct values in
different adsorption regimes. If (25) holds, then the
above surface susceptibilities should display the power
law  singularities, when K -—>K, from below,
X1~ (K, —K) "', and x,,~(K, —K) "

To construct the generating functions y; and Y, it is
enough to consider only the field-dependent part of the
surface free energy. This part of the free energy is closely
related to the comportment of parameters E{” and E”
under iterations. In particular, one can show that the
asymptotic behavior of E{” determines the asymptotic

behavior of x; and x;

FE
Mr)X(lr)~ H=0 >
OHOH, H, =0
. (26)
a Elr
Ny~ aH2 |H=0 *
s |H,=0

with W' being the number of surface sites (N ~27, in
this case). We have already studied in some detail recur-
sion relations (17) and (18) for bulk variables C and E. It
is not difficult to establish the recursion relations for con-
comitant surface variables C, and E,,

1

1—4A4+442—44,+844,—B*

, 27)

2(C +H)BC +2BC,+BH,—24,H—2A4,C)

E|\=2E,+E+

201—4A4+4A4%—44,+84A4,—B?)

N (1—2A)[(CH+H*+(C+2C,*+H,(2C+4C, +H,)]
2(1—44+442—44,+844,—B?) '

Then a study of these relations and their derivatives with
respect to H and H; suffices to learn the leading asymp-
totic behavior of (26).

For low values of the interaction parameter w (w <1),
we find that the leading singular behavior of N{"y{”
can. be represented by a term of the type
(B?E{” 73Cc"~Pacy V) dcy 1 /3H, (dC" V) / 3H).
One can verify that along invariant line (11) the first two
factors of this expression approach certain constant
values. The asymptotic behavior of 3C”/3dH has been
established earlier [see (19)], so that we can write
X" ~27"(1+V'13) /27, which leads to

X1~(KC—K}_7/1
1+V13
In -
with y,=———=—-=0.092301 . (29
Y (v 13) 29
In a similar way we find y,;= — 1, which mean that y,, is

not diverging for w <1. On the other hand, at the point
of the adsorption transition [K=K_.(1)] we obtain

(28)

the following estimates: dC{” /3H, ~[(2+V13)/37,
and 3212(1.” /acg'—”2 ~E\ /oCr~Vact V~1/B"
~[(1+Vv'13)/2]". This allows us to derive the asymptot-
ic behavior of the susceptibilities:

X1~2""(1/B")3C"" /3BH)(3C{" /3H,)
~[3(3+V13)/4)
and x;;~[(23+7V'13) /127, yielding to
in l9+31/T§ ‘

4
= — ) —1.0478
T A1) ’
o (30)
o [23+7vT3
12 oo
= — 1 —0.91095 .
Y T VD)

Using the above described approach one can also
determine the asymptotic behavior of the surface suscep-
tibility x, =9?f, /dH?|;;_,, which provides a generating
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function for the numbers Q (N) of all N-step random
walks given that both end points of the random walk
path lie in the bulk. We find that this function for
K —K_{w) from below display the usual power law type
of singularity: y, ~(K,—K) ¥s, where the critical ex-
ponent v takes the same value,

54+2V13
aot2vi13

2

Vs T 1+ 13)
in the desorbed phase (w < 1) as well as at the point of
adsorption transition (w=1). This means that the num-
bers Q (N) follow the asymptotic behavior of the type
(25), QS(N)~KC‘NN75 ', One can also check that the
above presented values of the critical exponents satisfy
the standard scaling relation of surface phase transitions
Ys=2Y1— 71 (see, for example, [9]), in the whole region
w=1.

We shall make some further comments below concern-
ing results presented here—after consideration of the
critical adsorption of an ideal polymer chain on a branch-
ing Koch curve. Before leaving the case of adsorption on
the T fractal, let us mention that the parameter D, from

1

=1.1846 , (31

J

AI
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partition function (20) enters the filed independent part of
the free energy density and can be used to deduce critical
behavior of corresponding quantities. Such quantities are
not, however, of very great interest for polymer physics,
and will not be considered here.

B. Ideal chain on branching Koch curves

As a second example, we study the adsorption problem
of an ideal polymer chain on the branching Koch curve
which contains loops [Fig. 3(a)]. We consider two cases
of the adsorbing boundary: In the first case, shown in Fig.
3(b), the adsorbing wall is presented by a one-dimensional
line, while the second one represents a fractal
boundary—the nonbranching Koch curve with fractal
dimension D; =1n4/In3 [see Fig. 3(c)].

To write the appropriate recursion relations, one can
follow the lines of Sec. II A. In particular, the general
form of partition function Z{”(S,,S,) is still described
by relation (20), and an integration over three internal
spins leads to pertinent recursions. Resulting relations
are more cumbersome than in the case of the T fractal, so
here we give only the recursion relations for bulk vari-
ables 4 and B,

_24—324%+1684°—2884°+(1—164+5642)B>*—44B>—B*

201—6A4+B)1—104 +24 A>*—~B+4 4B —2B?) ’

, B31—4A4+B)

(1—6A+B)1—104 +24 A>—~B+44B—2B?) '

Let us note here that the correlation function still has the
form (5). The critical behavior of the chain sets in near
the threshold value K=K_,=0.362890..., for which
Egs. (32) become singular under successive iterations
(A4 —>%, B —0 at K_). It turns out that, as in the case of
the T fractal, there exists an invariant line which controls
the critical behavior of the chain. The structure of that
line is rather similar to the one described in Sec. II A (see
Fig. 2), and its asymptotic equation can be written in the
form

/\ 7YX
A A
4
(b) /\ () /\
| SwrrE— - — AR

FIG. 3. (a) First two stages in the iterative construction of
the branching Koch curve. We consider two cases of adsorbing
boundaries—the one-dimensional line (b) and the nonbranching
Koch curve (c).

(32)

1 Vs 14+6V'5
A(B) 6 6 B 43
Along this line parameter B renormalizes according to
the law B’=B /4+0(B?), while derivatives with respect
to K follow the asymptotic law 94/3K
~3B" /3K ~(4)". This allows us to deduce the exact
value of the end-to-end critical exponent v,
v=In3/In11=0.458 16, in agreement with the corre-

sponding finding of Ref. [13].

In contrast to the bulk behavior of the chain, its sur-
face critical properties depend on a particular choice of
adsorbing boundary. For this reason, one has to consider
the two cases separately [see Figs. 3(b) and 3(c)]. As we
mentioned above, a complete system of recursion rela-
tions is somewhat cumbersome and will be omitted here.
Nevertheless, we give the leading asymptotic behaviors of
some main parameters affecting the surface critical
behavior of the chain. So, at the point of adsorption
transition w=1, for case (b) we found
944 /dw~3B\" /3w ~[(21+V249)/16]", whereas in
case (c) we have 34" /3w ~3B'” /dw ~[(9+V65)/8]".
Using these results, and taking into account correlation
function (22), it is easy to establish the following asymp-
totic form for the average number of steps on the surface:
MDD ~(AP)" and MV ~(AP), with A =(21+V249)/4
and AY)=(9+V'65)/2 for cases (b) and (c), respectively.

B2+ 0(B?) . (33)
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This allows us to obtain the exact values of the crossover
exponents presented in Table I. Due to a larger number
of available sites on the adsorbing wall in case (c) than in
(b), it seems somewhat surprising that the number M
diverges more slowly in the former case than in the latter
one [AY=~9.195>A)"~8.531, which entails a larger
value of the exponent ¢ in case (b) than that in case (c)—
see Table I]. This effect is subtle, and we attribute it to a
tendency of the ideal chain to visit sites of higher coordi-
nation number preferentially [20].

Following the lines of Sec. II A, we have been able to
extract the surface susceptibility critical behavior. It is
interesting to note here that corresponding derivatives
with respect to the fields H and H; follow the
same asymptotic law in both cases (b) and (c). For
example, at w=1_in both cases we have found
dC\" /3H,~[(3+V'5)/2]", and dC\’ /dH~3C'”/3H
~[(743v'5)/4]". This means that the difference appear-
ing between the values of concomitant surface suscepti-
bility critical exponents for cases (b) and (c)—see Table
I—has to be attributed only to different number of sur-
face sites in these two cases (N'”~3" and M"~4", re-
spectively). This explains why all surface susceptibility
generating functions in case (c) display a slightly weaker
singular behavior than their counterparts in case (b).

Speaking in more general terms, critical adsorption of
an ideal polymer chain appears to be qualitatively rather
similar in all three cases presented in Table I. In particu-
lar, it seems that the presence of loops in the lattice struc-
ture (Koch curves, in contrast to the case of the T fractal)
does not affect the critical behavior of the chain very
much. One can also verify that the scaling relation
2y,—v1.=v +v(D—D,), which has been established for
the adsorption of self-avoiding walks on fractal lattices
[4], is satisfied both at the point of adsorption transition
and in the regime of desorbed phase. A similar con-
clusion holds in the case of the scaling relation [9]
¥s=2y1—7; [for the adsorption problem on the branch-
ing Koch curve for both cases (b) and (c) we have found
y,=In[(474+21V'5)/6]/In11=1.14729 in the whole
range w < 1]. On the other hand, it is interesting to note
here that there is no simple connection between critical
exponent ¢ and susceptibility critical exponents, corro-
borated in the study of the adsorption of an ideal polymer
chain on fractal lattices with the same coordination num-
ber [10] (in this case, for example, at the point of the ad-
sorption transition it has been found that ¢=1v,; the
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values of ¢ from Table I are, however, slightly larger than
the values of y;; at w=1).

III. CASES OF LOCALIZATION

Now we turn to the adsorption problem for an ideal
polymer chain on fractal lattices where the sites of the
highest coordination do not form an infinite network of
nearest-neighbor sites. Here we shall consider two such
examples, depicted in Figs. 4 and 5. Both fractal lattices
presented here have a space scaling factor equal to 3, and
they provide a generalization of the well-known two- and
three-dimensional Sierpinski gaskets. The main topologi-
cal difference from standard gaskets is that the local
coordination number in this case fluctuates significantly
from site to site.

A. Ideal chain on a two-dimensional
modified Sierpinski gasket

Now we are going to study critical adsorption of an
ideal chain on a two-dimensional modified gasket, in the
presence of an impenetrable wall sketched in Fig. 4. This
can be done by using an approach quite similar to the one
described in Sec. II. In analogy with (20), an appropriate
partition function Z{” =Z{"(S,,S,,S;) can be taken in
the form

Z,=Dexp[ A,(S?+S3%)+ 4,52+B,S,S,
+B,(S,S;+S5,5;)+C,(S,+S,)
+C,S;+E,],

where S| and S, denote two corner spins lying on the ad-
sorbing wall, while S5 represents the third corner spin of
an rth order triangle (see Fig. 4). Now we can express the
rth stage partition function as an integral which involves
six corresponding partition functions of the order (r —1).
To write recursion relations for pertinent parameters, one
has to perform an integration over seven internal spin
variables—a simple task, in principle, but rather cumber-
some in practice. The complete system of recursive rela-
tions take up too much space to be given here, and we
present only the recursions for bulk variables 4 and B:
r A

A :X and B :K s (34)

where

TABLE 1. Critical exponents for the adsorption problem of an ideal polymer chain on T-fractal and
branching Koch curves with the adsorbing boundaries depicted in Figs. 3(b) and 3(c).

Lattice w=1 w<1 w=1

D, D, v Y Y1 Yu Y1 Y1 L
1.585, 1° 0.4538 0.9191 0.09230 —1 1.048 0.9110 09122
1.465, 1° 0.4582 0.9343 0.05550 —1.036 1.035 0.9227 0.9253
1.465, 1.262°¢ 0.4582 0.9343 —0.06447 —1.156 0.9150 0.8027 0.8940

?Figure 1(b).
®Figure 3(b).
°Figure 3(c).
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FIG. 4. Iterative construction of a two-dimensional modified
Sierpinski gasket with a one-dimensional boundary.

F=(1—64)1—44)(1—44—2B)A
+(1—4A4)(1—17A4+544%)B?
—(1—6A4)’B*—(5—284)B*—2B°,

A=(1—104 +244%*—2B+12AB—6B?)
X(1—8A4+1642—B?),

(35)

A=B3*1—104 +24 4*+4B—16 AB+2B?) .

One can also show that the two-corner bulk correlation
function takes the form

(r)
GN= B . (36)

(1—247)2—B"(1—24")—2B"

Here we shall briefly describe the bulk critical behavior
of an ideal polymer chain governed by the above rela-
tions. It turns out that at the critical value of fugacity,
K. =0.227148225. .., the recursion relations (34) be-
come singular under iterations [initial conditions still re-
tain the form (9)]. An analysis, similar to that of Sec. II,
reveals the existence of an invariant line qualitatively
similar to the one presented in Fig. 2. The asymptotic
equation of this line can be written in the form

274+4V27
2

A=1—(3+V3)B*— B*+0(B*), (37
which is valid for low values of B (as in previously stud-
ied examples, after a large number of iteration at K =K,
B —0, and 4 —¢). Along this line, parameter B follows
the law B'=2V"3B2+0O(B?), implying

1 r
(r) — 2
B 2\/3K

(r+1)
with k= lim -l—;(—r)—

r—o

2*"
} =0.802178548. .. .

(38)

_(1—64)1—44+2B)C+2B(1—64 +B)H

Cl
1—104 +24 42—2B+12 AB —6RB? ’

MILAN KNEZEVIC AND DRAGICA KNEZEVIC

FIG. 5. Schematic representation of a three-dimensional
modified Sierpinski gasket having a spatial scaling factor equal
to 3. An rth stage fractal unit consists of ten (» —1)th stage
units, which means that the final fractal object has the fractal
dimension D =In10/In3. The adsorbing boundary (shadow re-
gion) is represented by the two-dimensional modified gasket
from Fig. 4.

One can also show that 94" /3K ~dB" /3K ~2" at
K=K, which leads to the asymptotic law N"
~(1/B")3B'" /3K )~2'k "%, Consequently, instead of
a standard power law, the average end-to-end distance
R ~3" follows a logarithmic law

__In3 In(InN)

1 In2 InN

R N(lnN)ln(3)/]n2 (39)

In comparison with the previous examples, the polymer
chain is much less swollen in this case. The effect has
been first described in Ref. [13], and termed localization
of the chain. The localization effect has been explained in
terms of an entropic trapping: In order to maximize the
entropy it is profitable for an ideal chain to visit the sites
of the highest coordination number. These sites act,
therefore, as entropic traps preventing the swelling of the
chain [13].

It is interesting to see how the above mentioned lattice
structure affects the asymptotic behavior of the other
quantities of interest. Here we give some details concern-
ing the singular behavior of the generating function y(K)
for the numbers Q(N) of all N-step paths. The singular
behavior of this function can be deduced from recursion
relations (34), and corresponding recursions involving
field variables,

(40)

E'=6E + (33—1804 +54B)C*+(30—168 4 +48B)CH +(7—40 A4 + 10B)H?

2(1—104+244%—2B+12 AB —6B?)
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Using the first of these relations one can establish the
asymptotic behavior 3C”/3H | o~ (1+V3)", which is
valid along the invariant line (37). An analysis of the
second relation (40) allows us to estimate the most diver-
gent term of M7y". (M") denotes the number of sites of
an rth order lattice, N7 ~6") In this way we found
"~ (1 /MBI BC" /dH)?, which yields to the follow-
ing confluent logarithmic singularity:

1

~ In(K,—K)|?
X Kc_Kln( .—K)| .
2+V'3
In 3
ith p= =—0. .
with ¢ 2 0.684 99 41)

On the other hand, it is widely accepted that the numbers
of all N-step walks per lattice sites follow the asymptotic
law: Q(N )~KC_NN ~7, which entails an usual power law
type of singularity. It is clear, however, that the singular
form (41) is not compatible with the power law form
N7?71! of the subdominant term of Q(N). Indeed, it is
rather a logarithmic subdominant term in the asymptotic

form of Q(N) (see, for example, [21]),
®
as N— oo , (42)

QUN)~K N |In—

B,—2A4,B,+B}
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which leads to the singular behavior (41). It is interesting
to note here that, even though an anomalous behavior is
observed neither for a nonideal linear chain nor for a
kinetic random walk, an unusual critical comportment
indeed has been noticed in a model of lattice animals on
the same lattice [16]. Here we would like to stress that
the above established behavior for an ideal polymer chain
is rather a rule than an exception. For example, an
analysis show that the singular behavior of type (41)
occurs in the generating function P (K) for the number of
loops, with the exponent ¢ = —1n6/In2. As we shall de-
scribe in what follows, a similar critical behavior appears
in the surface generating functions as well.

To study the surface critical behavior of the chain, one
has to consider the complete system of recursion relations
for surface variables 4, 4,, B, B,, C,, C,,D,and E,.
The starting values of these variables can be taken in the
form AV=4P=cV=c{=EV=0, D{V=1, B
=Kw, and B(z” =Kt, with ¢ being the fugacity for those
monomers which lie in the layer adjacent to the boundary
(in this paper we confine ourselves to the simplest case
t=1). In addition, one should examine the surface corre-
lation function G, for two corner spins lying on the ad-
sorbing boundary. This function has the form

G\I

where we have omitted the iteration index (r). Alterna-
tively, one may study the correlation function G, for two
corner spins, one of which lies on the adsorbing surface,
while the other is situated on the bulk corner vertex from
Fig. 4. Although G| has a somewhat different form from
that of G, it is possible to show that, at the point of ad-
sorption transition, these two functions and their corre-
sponding derivatives have the same asymptotic behavior.
Thus we shall focus our attention here on G/ only.

An analysis shows that a general picture of the adsorp-
tion transition, described in Sec. II, holds in this case as
well. In particular, a critical adsorption transition takes
place for w=1. At this point the successive values of
corresponding surface variables satisfy the recursion rela-
tion (34) for bulk variables. The critical behavior of the
chain is still determined by the invariant line (37), along
which we find: dB{” /3w ~dBY’ /3w ~37", yielding to
the following law:

%_~(IHN)—1n(6)/ln2 as N— oo . (44)

This result is in contrast with the expectation that the
fraction of monomers on the adsorbing boundary van-
ishes according to the power law M /N ~N¢~1,

The singular behavior of the surface generating func-
tions can be extracted in a similar way. At the
point of adsorption transition (w=1) we have
found 3C"/dH ~dC\” /dH ~3CY’ /3H ~(1+V3Y,

(1—24,+B ) (1—2A4,—2A,+4A4,4,—B,+2A4,B,—2B%)

, (43)

f

dCY /OH,~(V'3)™", while 98C\”/3H, remains un-
changed under iterations along the line (37). On the oth-
er hand, an analysis of 3°E,/0HJH, shows that the
leading singular behavior of x{” at criticality
can be represented by a term of the type
~37(1/B")C" /dH)(BCY" /3H, ), which leads to an
asymptotic behavior of the same kind as that found for
bulk generating function (41),

1 ?
~ —K
x(K) KC_K|1n(KC )l
3+V73
In 13
with ¢71=T:—1.92746 . (45)

In an analogous way one can show that the generating
function y,; displays a similar behavior with a slightly
weaker singularity,

1
K.—K

c

X11(K)~ lIn(K, —K)| !

Inl8 _ 4 16993 . (46)
1In2

In order to deduce the asymptotic behavior of the
above generating functions in the regime of the desorbed
phase, some caution is necessary. A careful analysis re-
veals that in the region O <w < 1, there is another invari-
ant manifold, in addition to (37), which controls the criti-

where @1 = —
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cal behavior of the chain. To lowest order in B the equa-
tion of that manifold can be written in the form
A,=Lt—B/2. Using this equation and (37), one can
show that, at criticality, parameters B, and B, renormal-
ize according to the laws B|{~9BB3 and B} ~27B’B,,
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where « is given in (38), while K, and K, represent two

slowly varying functions of w [it is interesting, however,
that there exists a simple universal combination of these
functions K,/K2=8V'3/27; let us also mention that
A" — A¥(w) for large r, with A} (w) being a slowly

which leads to varying function of w]. In this regime we also found the
; asymptotic law 3CY’ /OH, ~(V'3)’B'"”, whereas deriva-
tives 3C" /3H and 8C'" /dH, follow the asymptotic laws
established earlier for the case w=1. Using the above re-

sults, one can show that generating function X" grows up

2r
r
and BY) ~K,k*?

(IR

rl 4
B ~K k5722 35

relatively slowly under iterations

XV ~371dE /oC " Vac V) aC!" YV /oH)BC TV 8H, ) ~[(3+V3) /3],

which results in a logarithmic critical behavior
X1(K)~|In(K, —K)|*!
3+Vv73

In

3
In2

A similar analysis shows that y;, vanishes as K —K,
from below in a logarithmic way,

with @,=

X1(K)~|In(K, —K)|*"

In3

with o= —E

=—1.58496 . (49)

=0.65750 . (48)

B. Ideal chain on a three-dimensional
modified Sierpinski gasket

We shall only briefly consider the adsorption of an
ideal polymer chain on a three-dimensional modified Sier-
pinski gasket depicted in Fig. 5. The fractal dimension of
this lattice is equal to D =In10/In3=2.095 90, while its
adsorbing boundary is represented by a two-dimensional
modified gasket from Fig. 4 (i.e., D,=In6/In3). A set of
renormalization parameters entering the appropriate par-
tition functions can be taken in any way similar to that
described in Sec. ITI A. The recursion relations for bulk
variables 4 and B can be written in the form
A'=T/(2A) and B'=A/A, with

Fr=2A4(1—4A4)7(1—6A42—4A4(3—16A4)(1—44)(1—64)B
+(1—4A4)3—684+43642—840A4°)B*—4(3—654+4164>—82843)B>

—3(13—150A4 +4164%)B*+6(5—224)B>+18B° ,

(50)

A=(1—14A4+644>—96A4°+2AB—8A4*B—7B%+32A4AB*—2B%*)(1—104+244%*— 6B +304B —3B?),

A=(1—4A4)(1—6A4+3B)’B3,

while the correlation function takes the form
B(r)
(1—24"7?—2B"(1—24")—3B""

We find that for a critical value of the fugacity K,
K_.=0.142512703. . ., there is an invariant line

A=1—1B—6B2—45B3+216B*+0(B°), (52)

G(r):

(51)

along which parameter B renormalizes according to the
law B'=B /2+O(B?) [note that there is no terms of the
order O(B?) in this relation; it is also useful to note that
one has to retain at least the terms of the order O(B?®) in
(52), in order to obtain the form of renormalization equa-

I

tion correct to lowest order for B]. Using these results,
one can show that the elements of corresponding 2X2
matrix, appearing in recursion relations for derivatives of
A" and B'" with respect to K [see (13)], depend on the
iteration index r. It turns out that these elements follow
the asymptotic law ~4’, so that one finds
94" /3K ~3B'" /oK ~2"". Taking into account this re-
sult and (51), it is not difficult to see that the leading
asymptotic behavior of the average number of steps at
K =K, has the same form, N”'~2"", leading to

03 w

, (53)
vIn2

R ~exp
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which means that the average end-to-end distance of the
chain grows up more slowly than any power of the num-
ber of steps. We can, therefore, speak of a localization of
the ideal polymer chain on a three-dimensional modified
Sierpinski gasket (it is obvious, however, that this locali-
zation is weaker than in the case of a two-dimensional
modified gasket).

Requisite recursion relations for surface variables are
very cumbersome, so here we are going to report only a
few results concerning critical adsorption of the chain
(w=1). An analysis of an appropriate surface correla-
tion function and of a matrix which enters into recursion
relations for derivatives of the variables 4,, 4,, B, and
B, with respect to the fugacity w, reveals the following
asymptotic behavior M /N”~277 which yields fur-
ther to

% ~exp[—VInN™] | (54)

As in the case of Sec. III A, we find that the average frac-
tion of the polymer chain steps along the fractal adsorb-
ing boundary vanishes more slowly than any power of its
length N, providing, once again, a manifestation of the
effect of localization of the chain. In this paper we did
not study other surface generating functions. It seems
likely, however, that the singular behavior of these func-
tions could be similar to the one described above.

IV. CONCLUSION

In this paper we have studied the adsorption of an
ideal polymer chain model on a variety of fractal lattices.
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Using a suitable Gaussian model, we have described a
quite general approach to treat the statistics of an ideal
chain in the vicinity of an adsorbing boundary. The ob-
tained exact results on fractal lattices with nonuniform
coordination show that critical adsorption in this case
can be rather different from the corresponding case on
fractals with a constant coordination number.

In particular, if a localization of the chain takes place,
the average fraction of adsorbed monomers near the
point of adsorption transition does not follow a simple
power law [see (44) and (54)]. We also demonstrated that
various bulk and surface generating functions can display
rather complex leading singular behaviors. For example,
in some cases we have been able to extract multiplicative
logarithmic corrections to the leading power law [see,
e.g., (41)]. Such a form of the leading singularity is in
very good qualitative agreement with the results of our
numerical analysis of relevant generating functions in the
critical region. Due to the above mentioned singular
structure of pertinent recursion relations, it is very
difficult, however, to reach a satisfactory quantitative
agreement between analytical and numerical findings
[22]. Tt is also clear from our approach that we cannot a
priori exclude the presence of some still weaker multipli-
cative singular terms [for example, the terms of the type
In?/In(K, —K)| in (41)]. This possibility makes every nu-
merical approach yet more delicate, and we think that
this point deserve some further investigation.

Note added: After this paper was submitted, we learned
that some results presented here, concerning bulk proper-
ties of an ideal chain on fractal space, have been derived
earlier in Ref. [23].
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(a)

FIG. 1. (a) First two stages in the iterative construction of
the T-fractal lattice. The final object has a fractal dimension
D =In3/In2. (b) Schematic representation of an rth stage T
fractal with the adsorbing boundary (shadow region). To obtain
the partition function Z'"(S,S,), one has to perform integra-
tion over two internal spins S, and S, [see relation (6)].



(a)

(b)

FIG. 3. (a) First two stages in the iterative construction of
the branching Koch curve. We consider two cases of adsorbing
boundaries—the one-dimensional line (b) and the nonbranching
Koch curve (c).



FIG. 4. Iterative construction of a two-dimensional modified
Sierpinski gasket with a one-dimensional boundary.



FIG. 5. Schematic representation of a three-dimensional
modified Sierpinski gasket having a spatial scaling factor equal
to 3. An rth stage fractal unit consists of ten (r —1)th stage
units, which means that the final fractal object has the fractal
dimension D =In10/In3. The adsorbing boundary (shadow re-
gion) is represented by the two-dimensional modified gasket
from Fig. 4.



